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An Analysis of the Discontinuous Galerkin Method 
for a Scalar Hyperbolic Equation 

By C. Johnson and J. Pitkaranta 

Abstract. We prove Lp stability and error estimates for the discontinuous Galerkin method 
when applied to a scalar linear hyperbolic equation on a convex polygonal plane domain. 
Using finite element analysis techniques, we obtain L2 estimates that are valid on an arbitrary 
locally regular triangulation of the domain and for an arbitrary degree of polynomials. Lp 
estimates for p * 2 are restricted to either a uniform or piecewise uniform triangulation and 
to polynomials of not higher than first degree. The latter estimates are proved by combining 
finite difference and finite element analysis techniques. 

1. Introduction. In this note we prove stability and error estimates for the 
discontinuous Galerkin method applied to the scalar linear hyperbolic model prob- 
lem 

(1.1) oun+au=f inQ, 

t = g on F, 

where i is a bounded convex plane domain, /3 = 01, /2) is a constant unit vector, 

up = /3- V u, a is a bounded measurable function on Q, and F _ denotes the 
"inflow" part of the boundary aQ: 17= {x E K2: v(x) /3 < o, where v(x) is the 
outward unit normal to aQ at x. Let us recall the definition of the discontinuous 
Galerkin method for (1.1) (cf., [91). Given a finite element partitioning h = { T } of 
Q., let Pk(T) denote the space of polynomials of degree < k on T E (h, and seek a 
function uh defined on Q such that for all T E Vh, Uh I T E Pk(T) and 

(1.2) fT(Uhh + auh)vdx + | v 131(uZ - u-)vds = O. v E Pk(T), 

where v denotes the outward unit normal to aT, aT3 = {x E aT: v(x) 8 < O}, and 
u$(x) = lime -O? uh(x + e/3), with uK-(x) = g(x) if x E 17. As will be seen below, 
Uh is uniquely determined by (1.2) and it is possible to compute Uh successively on 
each T E Wh starting at the inflow boundary 17 where u- is given [9]. Thus, (1.2) is 
an essentially explicit scheme for (1.1). 

The subsets T in (1.2) are usually triangles or quadrilaterals with possibly curved 
sides on ag. Here, we assume for simplicity that Q is a polygon and that all the 
subdomains in Wh are triangles. In this form, the scheme (1.2) has been used 
successfully for solving the neutron transport equation approximately, cf., [11]. 
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2 C. JOHNSON AND J. PITKARANTA 

To be able here to easily present our results and compare with previous work, let 
us for simplicity assume that Q is the unit square I x I with I = (0,1), fi1 > 0, 
2 >0 , and that Wh is a uniform triangulation of Q with nodes (ih, jh), 0 < i, 

j < N = h -, where h is the mesh length. Given a piecewise smooth function v on Q 
write v'(-) = v-(, nh). We shall under various assumptions prove error estimates of 
the form 

(1.3a) |- UL (12) Ch U Wk+1(0), 1 < p) 0 X, 

(1 .3b) || U - Uh ||LP(a) + maxj| Un - U I|LP(() 

C Ghk+min(l/2,1Ul/P UWk+I(Q), 1 p < X, 

(1.3c) max II Un Un | Chk+1/2 [ u wk+1(') + max Un wk+1)], 

1 <p < 2. 
For p = 2 we prove analogues of (1.3a, b) on general meshes and arbitrary k > 0 
using finite element techniques. For p = 2 and k = 0 or k = 1 we prove (1.3b, c) 
with 1 < p < ox and (1.3a) with 2 < p < xo on piecewise uniform meshes using a 
combination of techniques from Fourier and finite element analysis and finally in a 
similar way we prove (1.3a) for 1 < p < 2 and k = 0,1 on uniform meshes. 

Notice that if 1 < p < 2, then (1.3b) is an optimal estimate in the sense that the 
exponent of h cannot be increased while keeping the norm on u, nor can the 
regularity requirements on u be weakened while keeping the exponent of h. On the 
other hand, (1.3a) is not optimal in this sense since for the interpolation error 
U- h, where uhI T E Pk(T), T E (h, is a suitable interpolant of u IT we have 

(1.4) Iu - Uh|L(Q) < Chk+IUlwk?+1(Q). 

Most likely, the estimate (1.3a) cannot be improved in the above sense for the 
method (1.2) and it is an open problem if there are other methods for (1.1) which 
allow such an improvement. 

Estimates of the form (1.3a-c) for p = 2 on general meshes were proved in [6], 
[10] for the so-called streamline diffusion method. In fact, the discontinuous Galer- 
kin method and the streamline diffusion method have very similar properties when 
applied to (1.1), and the analysis of the two methods is also similar. In particular, it 
is possible to prove localization results and local error estimates for the discontinu- 
ous Galerkin method which are analogous to those presented in [6], [10]. Let us also 
mention that the L2-analysis of both the streamline diffusion method and the 
discontinuous Galerkin method can be extended to Friedrichs systems, see [6], [8]. 

The error estimates (1.3) for p = 2 (and the localization results mentioned above) 
are based on a stability estimate for (1.2) of the form 

(1.5) 1Uh Ih,1 + lUh IL2(a) < C[11f iIL2(a)) + 1 gIL2(F-)] 
where V Ih,/ is a mesh-dependent seminorm which controls the derivative Uhfi and 
the jumps of v /3PUh across the interelement boundaries. The stability estimate (1.5) 
is a discrete (weak) counterpart of the stability inequality 

11 Us IIL2(a) + 11 U 1IL2(a) < C [ 11 f 1IL2(a) + 11 g ||L2Or-)] 

which obviously holds for the continuous problem. 
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Lesaint and Raviart [9], who gave the first analysis of the discontinuous Galerkin 
method, proved the following estimate for (1.2) on general meshes for k > 0, 

(1.6) J|u- UhIJL2(s) < ChkJU Wk1+1). 

Notice that in (1.6) the gap, i.e., the difference between the number of derivatives of 
u and the exponent of h, is equal to one. Results of this type are typical in the usual 
finite element analysis of linear hyperbolic problems which is based on weaker 
stability estimates of the form 

|| Uh 1 L2(a) S C( I1f 11L2(a) + J1g 11 L2(4-)). 

The estimate (1.3a) with p = 2, for which the gap is only 4, was used in a crucial 
way in [7] where an L2-analysis of a fully discrete scheme for neutron transport in 
cylindrical geometry was given. The estimate (1.3a) with p # 2 may be used to 
generalize this analysis to Lp, p = 2. Of particular interest (for eigenvalue problems) 
would then be the case p = 1. Unfortunately, we have been able to prove (1.3a) for 
p = 1 only on a uniform mesh. 

The estimates (1.3b, c) are of interest when we consider (1.1) as a model for a 
linear hyperbolic initial-boundary value problem with x2 representing a time varia- 
ble and where the approximate solution Uh is computed successively on the strips 

S,= {x E S: (n - )h <X2 < nh/i, n = 1,...,N, so that Ijun - UnIL I is the 
error on each time level x2 = nh. For conventional finite element methods (not 
including the streamline diffusion method) for (1.1) with piecewise polynomials of 
degree k, the typical result for p = 2 reads 

max L2(I) I ChkI U I Wig 1(Q), 
n 

with a loss of a factor h1/2 as compared with (1.3b). For (dissipative) finite 
difference methods a typical result for (1.1) (again with gap = 1) obtained by 
Fourier methods in the case of a uniform mesh reads 

(1.7) max II Un - UIn IL <, ChmI|g||Wt+1(R), 
n 

where now = {x eR2: 0< x2 <1, -00 <xi <00), f= 0, a = 0, the initial 
data g is given at x2 = 0, and the order of accuracy of the difference scheme is m. 
One can verify for k = 0 and k = 1 that the discontinuous Galerkin method in these 
cases corresponds to such a dissipative finite difference method of order m = 2k + 1 

(with a special choice of initial data for k = 1), and thus we may by interpolation 
from (1.7) obtain the result 

ma |Un _ U~n ||L Chk+112|1 g ||Wk+1(l maxJ u - 

LUflILR , 
n 

which is the same as (1.3b, c) in the present situation. 
The plan of the present paper is as follows. In Section 2 we introduce the notation, 

prove a basic local stability estimate for the scheme (1.2), and carry out the error 
analysis in L2. Sections 3 and 4 are devoted to the Lp stability and error analysis. 
First, in Section 3, we carry out a Fourier analysis of a finite difference scheme 
associated with (1.2) in the case where k = 1, a = f = 0, &2 is a half-plane, and W'h 

is a uniform triangulation of U2. Finally, in Section 4, we prove Lp error estimates 

using the results of Section 3. 
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2. Preliminaries and L2-Analysis. For 2 a convex polygonal plane domain, let g 

be a given family of triangulations of Q indexed by a parameter h such that if 
W E & then h = maxT e h hT, where hT denotes the diameter of T. For conveni- 
ence, we assume the geometry of the triangulations to be such that if T,, T2 E V E &, 

T, * T2, and aT l aT2 is nonempty then aT1l n 2, is either a common side or a 
common vertex of T, and T2. In the analysis below we will further assume that the 
triangulations are either locally quasi-uniform (Section 2), uniform or piecewise 
uniform (Sections 3 and 4). The family & is called locally quasi-uniform if there is a 
positive constant K such that if T E V E A, then the angles of T are bounded from 
below by K. In a uniform triangulation 6h, all the triangles are identical up to 
translation and rotation. Finally, & is called a piecewise uniform triangulation 
generated by a triangulation W, if any Wh is a refinement of W such that the 
restriction of ifh to any T E - W defines a uniform triangulation of T. 

In what follows, we use the spaces Lp(Q) and the Sobolev spaces Wm' P(Q) and 

Hm(&2) = Wm2(Q2), m > 1, 1 < p < x, in their usual meaning for Q a domain in 
R2. The norm in Lp(Q) is denoted by 11 - lip if p # 2 and by 11 II1 if p = 2. 
Similarly, if T' is a piecewise smooth curve or a union of such curves, 11 * lip r denotes 
the norm in Lp(P), with the subindex p omitted if p = 2. Some further mesh- 
dependent norms will be introduced later on. Below, we denote by C or c, a positive 
constant which may take different values on different occurrences. The constant may 
depend on the above parameters K and k but not on other parameters, unless 
indicated explicitly. 

As is shown in [9], one can always solve (2.4) successively, triangle by triangle, 
with uK given on aT either by the previously computed values or by the boundary 
condition. Thus, uh is determined uniquely if (1.2) can be solved locally in each 
T E (,h for given f and u-. That this is the case for h small enough is established 
by the following result: 

LEMMA 2.1. Assume that f E Lp(Q) and g E Lp(Th), 1 < p < xc in (1.1). Then 
there is a positive constant h0 (depending on K and k) such that if hTIIa Io ,T < h0 for 
all T E W h, then Uh is determined uniquely by (1.2) and one has for each T Ec= Wh the 
local stability estimates 

Iuh IlpT + h/PhI uZ hIpaT_ + hlJ u1 Ah P aT+ 

< C h TII f p,,T?+ h lPjII V A 
IUjIpaT_} 

and 

hluhfihlPT < C{hT h1P7I v 13(uZ - u ) Ip aTm + 11Uh 1PT + Ilf hipT} 

Proof. Let us first note that, by a scaling argument and by the equivalence of 
norms in a finite-dimensional space, we have for any w E Pk(T), T E (-h, the 
inequalities 

C-1h1/2"- 21p W 1IpT + h1/2 - 11p W IP aT 

(2.1) ( 1/2 

T kh fwid JT Iv ITw~s s1Ch22IW IlpT, 
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where 1 < p < xo and C depends only on K and k. Now consider a given T E W', 

denote UhI T by Oh* Oh E Pk(T), and set 

6(kh~~v)=f(~h+?a~h)Vdx f 'k I vIIds. VA (O I JT (OhO h X + lTL OhIP |v 

Choosing v = Oh + yhT4hf, where y E (0,1] is defined below, we have 

(2.2) || V I|pT < CII Oh IIPT, 1 < P < X, 

and 

VP(h IV) = (A 21 _J ds + yhT f2 dX 

+yhTJ_ I vJ3lfhkhds + fakh(?h + yhT~hf) dx. 

Using here (2.1) and (2.2) and recalling that y < 1 we obtain 

6(k V ) > 7(1 - CY- ChTIA a || ,T) hTfI0dX + laT ).dS 

Choosing here y =mint1, 1/2C} and assuming that ChTJ}allocT < 4, say, we 
conclude, recalling (2.1) and (1.2) that for some constant C, 

C-1 h'-74/PJJ Ph |lp2T + h- 2/PlJ 'h I1p,2T} 

(Oh IV) f|fvdx + uhVjv . h Ijds. 
T a~~~T_ 

Applying on the right-hand side the Holder inequality, and recalling (2.1) and (2.2), 
the first inequality in the lemma follows. The second inequality can now be proved 
analogously, by choosing v = 'Phd in (1.2). We omit the details. El 

In what follows, we associate with each W h E 9 a finite element space Vh defined by 

(2.3) Vh {v e L2( ): VITE Pk(T), T E Wh 

Further, we set 

rh( 
U aT)\aQ. 

Te Wh 

If T c Q and S c 
rh 

U a2, we use the abbreviations 

(V,W)T | vwdx, Kv,w) | vwv * .Ids, 

where v is a normal to S. In this section we drop the subindex T if T = U. For a 
piecewise continuous function v, we set v?+(x) = lim 0 ? v(x + 43) for x c r*. 

By summing over T E Wh in (1.2), we obtain the following equivalent formula- 
tion of the discontinuous Galerkin method. Given k and h, find Uh E Vh such that 

(2.4) (Uh, v) = ( f,v) + (g, V)I, V E Vh, 

where 

(2.5) ~R(w, v)= (w,+w )?w-wv)?w )P T2.5 A v= , + aw, V)T +h (W+-W-'V+)rh + (W'V)r_. 
Te Wh 
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Using the partial integration formula 

(Wf, V) T(W, v)aT+- (w V)8T -(wW Vf)T 

we can also write 

(2.6) .,(w, v)= (w, -v: + av)T + (?w-,v--v+)p + (w, v)v+. 
TE gh 

Note that we can replace Uh by the exact solution u in (2.4), i.e., we have the 
consistency relation 

(2.7) M(u - u, v) = 0, v E Vh. 

In the error analysis below, we also make use of the following dual variational 
problem: Given p E L1(J), find Oh E Vh such that 

(2.8) (W, Oh) = (9EW), wE Vh. 

In view of (2.6), Okh is simply the discontinuous Galerkin solution to the problem 

(2.9) (is+ ak = p in Sm 

Let us now assume that 9' is a locally quasi-uniform family of triangulations and 
let us associate with each Wh E g a seminorm I - Ih.A and a norm II IIIh,, defined by 

IV h2'#= E h +ffvjf0T ? (V V-))2 ?(V)) 

11, 1112 8 = 11 V112 + I 12 

where ((v)j2 = (v, v)s. Then we can prove the following result, which is one of the 
main results of this paper. 

THEOREM 2.1. Let f' be a locally quasi-uniform family of triangulations of Q, and let 
Vh be defined by (2.3) for each W'h E & and for some given k > 0. Then, there is a 
constant ho depending on K and k such that if u is the solution to (1.1) and 
h1/2 Ia 0, U < h0, the solution uh to (2.4) satisfies the stability estimate 

|llUh 111hh I < C 11 f 112 + 
||1 I 

*1 / 
g |}r ) 

and the error estimate 

(2.10) II1U - Uh IIh, -<- Chk+1/21 U IHk+1(g), 

where the constants depend on Iaj Koo and diam(2). 

Remark. Note that from the error estimate (2.10) it follows, in particular, that 

((U - uh)), < Chk +1/2I UIHk+l(a) 

or, more generally: we have for any i2' c f2 with boundary F' such that Fr' = I_ that 

((u - uh))-, < Chk l /21u I Hk1I(). 

This means that the estimate (2.10) is optimal. (See the Introduction.) 
Proof. Following [10] we introduce the weight function 

A(x) = e-Y(`0).E0 
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where x0 is a point on M2 chosen so that II4'II = 1. For X E L2(Q), let X denote 
the L2-projection of X into Vh, i.e., X is defined by 

(X ,V )T = 0, v E Pk(T), T E eh. 

By (2.4), we have 

(2.11) 2(uh,4 uh) = .#~(uh, Ouh luh) + (f,;h) + (g, A). 

On the left-hand side we obtain by straightforward computation 

2(uhv Puh) = (uh, (pa - a)uh) 

+ 
? UK - u U+( Uh-))I + 2(Uh,4Uh)lF. 

Choosing y = 2 I1aII + 1 and noting that 

-43(x) = y4 (x) > yeYdiam() 

we obtain 

(2.12) U6(uh12'uh) ? C{1u1 + 2 
- + + 22 

where C depends on y and diam U. To estimate the right-hand side of (2.11), we use 
the standard estimates 

(2.13a) IIX - XllT Ch lxlT lHk+1(T), 

(2.13b) IIX XIIaT Ch T / llxHk+1(T). 

Since IUhIHk+1(T) = 0, IIPIw'X(T) < Cy' and IlUhIIHI(T) < ChT 'IuhIIT, 0 < / < k + 1, 
we obtain 

AUh -4Uh|T+ hT/ 4Uh -4Uh 8TT Cmax{yhT,(yhT)k l}luhllT 

Now setting v = 4Uh - PUh and recalling that (v,w)T = 0 for w E Pk(T), T E - 

we conclude from (2.5) that 

,4(Uh,V) = (Uh - Uh,V )F, + (Uh,V)F-+(aUhV). 

By the above interpolation error estimates, if yhT 1 1, we have 

((v-))rh + ((V))F < Cyh 1/21 Uh , l|vii < Cyhiiuh ii, 
so that 

g76(Uhlpuh h) | ;(iiuh11 + ((U+ - 2+ Kuh))2) + Cy2hiIUh 112 

Assuming now that yh 1/2 (211allI + 1)h1/2 is small enough, and combining 
(2.11), (2.12) and Lemma 2.1, we obtain 

ClilUh lllp < (UhUh) C(iif i1 +II 

which proves the asserted stability estimate. 
The error estimate follows in a similar fashion noting that 

CiliUh - il0p - U. l(uh - U)) = (U - il(Uh - U)) 

< Ch / | U iKk+1(U)iii Uh - iiih,fB- 

Here the equality is a consequence of (2.7) and the last inequality follows from (2.6) 
and(2.13). E 
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3. Finite Difference Analysis. In this section we apply the discontinuous Galerkin 
method to the simplified model problem: Find the function u = u(x, t) defined on 
R x R' such that 

(3.1) Tat + YTX = 0, (~) x + 
u(O, x) = g(x) x E R. 

This is obviously a special case of problem (1.1) where 2 is a half-plane, a = f = 0 
and y = f#2//i1 is a constant. We assume below that 0 < y < 1. The finite element 
partitioning (Vh of i = R x R + is defined in terms of the grid points 

xi ih, i= 0 +1,? 2,..., 

tn= nh, n = 0,1, 2,.... 
We set 

fh ={Tn+ Tn , n = 0,1,. ..., i=0 +1 ..., 

where Tn+ is a triangle with vertices at (xi-J, tn-1), (xi, tn-1) and (x,, tn) and Tni 
has its vertices at (x-11, t,1-l), (xi1, tn) and (xi, tn) (see Figure 1). Now if Uh(, tn-l) 
is given for some n > 1 we can solve (1.2) for Uh on any T = Tn+I and thereafter on 
any T = Tn-, thus obtaining Uh(, ta) Denoting by Wh the space 

Wh = { VE L2(R): V Ie Pk(Il), Ii = (X1, X,), i 0, ?1 ... 

we can write the discrete solution algorithm formally as 

(3.2) (h 
- 
, tn)= G ( t1 

Uh- ( -Ih) 
= dnhoet 

where Gh: Wh Wh is a linear operator independent of n, and ih denotes the 
L2-projection into Wh. We have here utilized the fact that the numerical scheme is 
unchanged if g is replaced by ~hg, a property that is obvious from (1.2). 

To see the structure of the operator Gh more closely, consider the triangles 
Tn+ i1 Tn+ and Tni for some given n, i (see Figure 1). Since y E [0,1], we can solve 
(1.2) for T = Tn+. once uh(x, tn -) is known for x E (xi1, xi). In fact, we obtain for 
all i, 

(3.3) uh(x, t) = Uh(x - Y(t tn-1), tn-1), (x, t) E 7+ 

t n 

t n-1 x i-2 x i_1 xi 

FIGURE 1 

Using (3.3) we can now determine Uh on Tni from 

(3 4) 'ton ( at My~ ! a ) v dx + (uZ - uh)vv i fds =0, 
(3.4) 

a Tn-,) - 
t)~~~~~~~~~~~, c P, (T-') 
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Let us choose here v(x, t) = w(x - yt), where w is a polynomial of degree < k on 
R. Then av/3t + -y av/ax = 0 and we obtain by partial integration in (3.4) that 

f u^vv *IAds u | VV * Ads. 
(a",7). (a;-)+ 

Noting that v *3 ds = a dx on a Tt with a a constant, and recalling (3.3), we further 
obtain 

| Uh (x, tn) 
- h (x ytn- J] W(X - Ytn) dX = 0. Xi-l 

Since w is here an arbitrary polynomial of degree < k, we conclude that G. is 
defined by 

(3.5) Gh =7fG, 

where G denotes the corresponding exact solution operator: 

(3.6) (Gv)(x) = v(x - yh). 

We may interpret (3.2) as a finite difference scheme by introducing the notation 

U() [U1 (X),* * *, ,k(X)]T 

Uln(X) =h-(X tn) 

U2n(X) = h ax (X, tn) I 

Uk +1(X) = h Uh (X, tn), 
axk 

where x E {xi+1/2 = (i + 1/2)h,i = 0, ?1,... ). Obviously, Un(Xi+1/2) defines 

Uh(-, tn) uniquely on the interval (xi, xi+l) and vice versa. Since uK(-, tn) is 
determined uniquely on (xil,x1) when Uh(- tn-1) is known on (xi12,xi), (3.2) 
corresponds to a difference scheme of the form 

(3.7) Un(x) = A1Un-(x) + A2U -(x -h) (EU 1)(x) x E R, 

where Al and A2 are (k + 1) x (k + 1) matrices, and we have made the usual 
extension of the scheme to all x E R. The matrices depend only on the parameters y 
and k, so the operator E defined by (327) is translation-invariant. 

In the case k = 0 we have 

Al = 1-y, A2 = Y. 

i.e., (3.7) reduces to the ordinary upwind scheme in this case. If k = 1, one-has 

Al = (1-y)( 2y ) A2 = (Y3 2 y) 

Below we confine our attention to the case k = 1. We let Sn, n > 0, be defined by 

Sn = U(aTn7)+ = U(a1TniX)- 
i i 
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Also, we let fB = (1, y), so that 

{1, x c (aTnI)n(aTn+7)+ 
We also introduce the parameter p defined by 

p = y(1 - y). 

The main purpose of this section is to prove the following 

THEOREM 3.1. Let k = 1 and let uh be defined on R X R+ by (3.2) through (3.6). 
Then there is a constant C such that for all n, p, n > 0, 1 < p < x, 

(3.8) || l (U * tn) llpR < C11g l l1,R 
and 

(3.9) IIP * 3(uZ - h) lls = /211 
The proof of Theorem 3.1 is based on Fourier analysis of the finite difference 

scheme (3.7) and is split below into several lemmas. We begin by introducing the 
Fourier transform 

Un() = f_ eixtUn(x) dx, E E R, 

which allows (3.7) to be written as 

U.'n(t) =Eh)n-l(4)' 

where E(#) = A1 + e iOA2. Below we use a vector norm | defined by 

lvi = (ivi2? 1 lv212) 1/2 

where V1 and V2 may be real- or complex-valued. The reason for using this norm, 
as will be seen in Lemma 3.2 below, is the obvious relation 

IVI = iiViiL2(0,1), V(X) = V1 + V2(X -2), X Ee (0, 1). 

If A is a 2 X 2 matrix, we set 

IA su = UPIV I V0IAVI 
if V= (Vi1i= su 

Further, if V = (V1, V2)T is a vector-valued function defined on S c R, we denote 

by IIVIYPs or by IIVIIL (S) a norm of Vdefined by 

lV|llpS = |IVIILP(S) = |II V() I|ILP(S). 
Similarly, if A is a 2 X 2 matrix with coefficients real- or complex-valued functions 
defined on S C R, we set 

I|A IIps = || A IILp(s) = IIIA(.) I ILP(S). 

Let [Lp(R) denote the space of vector-valued functions V = ( V2)T defined on 
R such that Vi E Lp(R), i = 1, 2, and let E be a linear translation-invariant operator 
defined on the whole space [Lp(R)]2 for some p, 1 < p < ox. Denote by IIE Ip the 
norm of E defined as 

11 EVII1p,R 
IIEIlp sup 

VE [Lp(R)]2 Io V 11pR 
v0o 
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Assume further that the Fourier transform of EV, V E [Lp(R)]2, as defined above, 
is given by 

(EV)(t) = E(hj)V((), V E R, 
where h > 0 and E(@) is 27w-periodic. Note that the operator E, defined by (3.7), 
satisfies these assumptions for any p. 

The operator norm //E/Jp can be estimated using the following lemma, which 
states the well-known Carlson-Beurling inequality (cf. [4]). In the lemma, X denotes 
a smooth function defined on R such that X(O) = 0 for 101 > 37r/2 and X(@)= 1 
for 101 7T. 

LEMMA 3.1. Under the above assumptions write E(@) = e 9iaE(0), where a E R is 
arbitrary. Then /iE//p = Mp(E(0)), where the latter can be estimated as 

MpV(0E(@) ) < C (11 X E11 L2(R) ||d (0XE) IL() 

In order to prove the stability estimate (3.8), we obviously need an estimate for the 
translation-invariant operator En: U0 -+ U" defined by (3.7). We prepare the 
situation so that Lemma 3.1 can finally be used. An essential step is then to estimate 
the growth rate of E(0)n = (Al + e-i9A2)n as n increases. If E(@) has two linearly 
independent eigenfunctions associated with the eigenvalues A1 and A2, we can use 
the usual splitting 

(3.10) En(@) = D-1(O)A(0)"D(0), n = 1,2,..., 

where A(0) = diag{Al, X2). However, since E(0) is nonsymmetric and depends on 
both y and 0, it is difficult to prove the existence of the diagonalizing matrix D in 
(3.10) in general. Therefore, we use below the splitting (3.10) only for small 1/1 and 
near the points (0, y)= (?7 ,0) and (0, y)= (?T, 1); for the remaining values of 
the parameters, as it turns out, it suffices to estimate the matrix norm of E(@). 

The essential properties of E(@) to be required in the subsequent analysis are 
established by the following three lemmas. 

LEMMA 3.2. There is a positive constant K such that E"(@) admits the representation 
(3.10) in the range (0, Y) E D. = [-IC, K] X [0,1]. The eigenvalues of E(@) are smooth 
functions of y and 0 in DK and satisfy 

A1 = exp{-iyO - a(y)p04 + o(P1i i)}, 

X2.= exp{-cp + O(PIOI)}, 
where a(y) is strictly positive for y E [0, 1] and c is a positive constant. Moreover, 
D (0) and D 1(0)/ are bounded by a constant for all (O, y) E D,. 

Proof. For a given y E (0,1), let A(0) be an eigenvalue of E(@) and write 

A(@) = e 'y + pa = (10- ) + pi = 1 - yo + p[4+(y,) + a], 
where we have introduced the new variable = 1 - e 9. For any y E [0,1], 1 
admits the series representation 

-F(k -y) k 

k=F(k +1)F(2) 
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which converges in the open unit disc 4+ < 1. Thus 4 is an analytic function of 4) 
on the open unit disc and so 4 = 4,(y,o 4(9)) is a smooth function of 9 on the 
interval [-c, c] for any y E [0,1] and c < 7T/3. 

Denoting by I the identity matrix, we obtain, using the above notation, 

E(@) - (O)I = Pt -60g -6 + (4 - 2y), + +( 

Using the series representation of 4, we further obtain, after a straightforward 
computation, 

Det(E(9) -(9)I) = 2 + ajt + a2, 

where a1 and a2 are smooth functions of y and 4 behaving for small 141 as 

a= 6 + 0(14)), a2 = - _ + y2)44 + 

Thus, the eigenvalues behave for small 14)1 as 

X-= ei - p[C(Y),04 + b1(y,4))], X2 = e-'Yo - p[6 + b2?(,0 I 

where c(y) = I (1 _ Y + y2)> 0 and b1 and b2 are smooth functions of y and 4 
in the range y E [0,1], 141 < K, K small enough, with b, = O(I4)5I), b2 = 0(141)) 
Recalling that 4 = io + 0(92), we obtain the asserted representation of the eigen- 
values for small 14)1. 

The eigenvectors corresponding to the eigenvalues XA and X2 are given respec- 
tively by 

V1=(1) + 0 (02), V2= ( fiO@ + O(02), 

so that 

(3.11) D(9)= (a 1X2i) + O(2). 

This proves the assertions concerning D, so the proof is complete. El 

LEMMA 3.3. There is a positive constant K such that E(@) allows the representation 
(3.10) in the range 

DK ={(9,Y) E [-T,7T ] X[0,1]: y(i - y) < K, X -191 < K}. 

The eigenvalues of E(0) are smooth functions of y and 9 in DK satisfying 

IX1,21 < e-cP, (y, 0) (= D, 9 

where c is a positive constant. Moreover, ID(9)I and ID-1(D)I are bounded by a 
constant for all (9, y) e DK, 

Proof. By a straightforward computation, the eigenvalues of E(9) are given for 
small y by 

A12 = 1 -[2 + e-i + ya1(y,9)]y + {4 + 10e-9 - 5e-2'9 +?ya2(y, ) / y 

where a, and a2 are smooth functions of y and 9. By inspection, if K is small 
enough, the eigenvalues are smooth functions of y and 9 in the range K < I1 < - K 

and satisfy I1,21 < eCV, where c is a positive constant. Moreover, near the points 
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(y, 0) = (0, ? 7r) the matrix D in (3.10) is given by 

D ( 1- i I + Vi 
+ 0(y) + O(le"6 + II), 

which shows that IDI and ID'j are bounded in the range y < K, S - IO 18 K, K 

small enough. 
The case where y is close to unity is handled similarly. 0 

LEMMA 3.4. Let 0 < K < 2. Then there is a positive constant c depending only on K 

such that 

IE(8 < e`P. if K <j|j< X- K and-y E-[0,1], 

and 

lt(0)l Ae-c if K Il0<rand max{y,1-y}> K. 

Proof. We need first some notation. For V a vector, set W= E(0)V and define 
the functions v, w and z on [0,11 as 

V(X) = V1 + V2(X 12), W(X) = W1 + W2(X - 2), 

(() e-i"V(X + 1 --Y), 0 < x < y, 

v (x -y), -y < x 1. 

It follows from the definition of E(8) (see in particular (3.5) and (3.6)) that w = 7TZ, 

where 7r denotes the L2-projection into the space of polynomials (with complex 
coefficients) of degree < 1 on [0,1]. Note that IIZIIL2(O1] = IIVIIL2 o,1] and that z is a 
polynomial only if either p = 0 or if e -6 = 1 and V2 = 0. 

Assume now that K < Ij1 - K. Then, since Im(e - ) is strictly nonzero, it is 
easy to verify that for any polynomial p of degree < 1 one has the inequality 

max |lz - P IILOO{O,] 11 Z - P IIL,{l -y,1]} > CII v IIL [O1], 

where C is a positive constant depending only on K. Setting p = -rz, it follows easily 
that 

|7TZ -Z 11L2[O, > C minf y, 1 -Y}1V112 CPII V l0112 L2 [0,11 >1 L2[0,11 CPIIVIL2[10I.1 
By a similar reasoning, if IO1 > K and P > K, K > 0, there is a positive constant 
depending on K such that 

7TZ - Z 112 CII V 112 

Combining the last two inequalities we have 

| E(0) V 1 = ||w 11L210,1] = liZ 1 L2tO,11 Z l -Z 11L210,1] 

< qllvllL20,11 = qlVl, 

where q = 1 - C(K)p if 0 < K < 101 < 7T - K, and q = q(K) < 1 if 0 < K < 101 < 7T 
and p > K. Since this is valid for any vector V, the proof is complete. O 

Remark. From the proof of Lemma 3.4 one might think that the inequality 

IE(0)1 < e -P holds whenever 101 > K, independently of y. That this is not true is 
seen by choosing v(x) = x - 2 and 0 = + 7T. Then 

||~z - ZIL2[0,11 < 11 ZL2[10,11 (= 0(P), 
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which shows that one can only have (and in fact has!) the estimate 

IE(O) I e-cP, IO1 > K, yE [0,1]. 

This is why Lemma 3.3 is needed (see below). El 
In the next lemma we combine the estimates of Lemmas 3.2 through 3.4. 

LEMMA 3.5. Let E(8) = eiYoE(0). Then there are positive constants C and c such 
that for all n > l and 0 E -as], 

IE ," ACe-cpn8 
d 

t()y < C(l + pnI0|3)e-cPn4 +C(l + pn)ecpn. 

Proof. Choose K > 0 so that the assertions of Lemma 3.2 and Lemma 3.3 hold. 
Using the representation (3.10) together with Lemma 3.2 and Lemma 3.3, we then 
obtain 

2 

IE(8)yl CE Xi()ln, 
i=1 

2 

| d61 (6 | <CE (I61) | ? | [ e 
d 

Xi i(0)] |' 

where X12 are the eigenvalues of E(0). From these estimates and from Lemma 3.2 
and Lemma 3.3 the asserted estimates follow if K < 101 < T- K or if ST - K < 101 < ST 

and max{ y, 1 - y } > K. In the remaining cases, we use Lemma 3.4 to obtain 

da E(8)| < n d r()A ? i(y)-1 

= n d [e1 eA2 IE() In- 

< Cpn E(8) In1< C-p ne -cpn. 

This completes the proof. El 
We are now ready to apply the Carlson-Beurling inequality for proving (3.8). 

Choosing a = yn in Lemma 3.1 we conclude that 

(3.12) IIU IIpR < MP(En)IIU 0IIP R, 1 Sp < OO 

where P(E n) is estimated as 

MP(E ) < C II|xEl IL2(R) dO Xk L2(R)} 

Using the estimates of Lemma 3.5 it follows that 
HI XEn 112 c3vT/2 e - epn 4 d Cmi{1(pn)-1/4} 

IIEIL2(R) '< Cf enOdO < C, min{ 1, (pnY14 

and 

||d 2| C| /2 ?(pn)21016 ecpn04 + )2] 

< , ?11 ?(pn)Je1c4 l d 
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Thus, M (E') is bounded by a constant independent of p and n. The estimate (3.8) 
now follows by combining (3.12) with the obvious estimates 

|| Uh- ( , tn ) IIp ,R -< C11 Un 11p,R, 1| U0 1Ip,R -< CHl g lip,R- 

It remains to prove (3.9). To this end, we will estimate the vector-valued function 
Wn defined by 

(n= W n), W1 (x) = Uln(x) - Ul(x- h) -U(x) 

W2n(x) = U2n(x)-U2(x-h), x E R. 

Here U1 = (U2nUr)T is defined by (3.7). Let us first show that it suffices to 
estimate Wn. 

LEMMA 3.6. There is a constant C independent of y and n such that 

11v /3(uh - Uh ) IIS CPllWn P!R. 

Proof. Let vi be a polynomial of degree < 1 on R2 such that (Uh - vi) )T+ = 0 (see 
Figure 1). In the subdomain W(n = {(X, t): x E R, tn-l < t < tnj we may interpret 
Wh = Uh - vi as the discontinuous Galerkin solution to the problem 

au + y a = 0 in wn, U(., tn-1) = (u V- 

on the triangulation nh= {TE =h- T c wj}. Since Uh -v vanishes on 1,i we 
obtain by applying Lemma 2.1 and (3.3) that 

jjV * (UZ - Uh) jlp,(aT,j)f =V * f[(uh - V) -(Uh - Vi) ] 1p,(aT,).)_ 

< Cy|ju| - 
Vi11p,(aT,-)_n(aT,,)+ 

< C1yIj(u_ - v1)( i tn-1) IILP(X1-2 X2-) 

and similarly, 

* - h) llp,(aT.,ih =i -:[(Uh Vi 1)- (Uh Vi- 1) ]lp,(a7,)- 

s C(1 - y)j|(uj - vi_)(, tn-1) 1lLP(x,1.x,) 
On the other hand, it follows from the definition of Wn that Wn vanishes on the 
interval (X ix1) if and only if 1 tn1) is a polynomial of degree 1 on the 
interval (xi-2, xi), i.e., if u-(x, tn1) = v1(x) = v,1(x) for x E (xi-2, xi). From 
this it follows easily that 

IlUh(., tn) - VjIILp(Xi-2,X2-1) < CJll ( W nLp(xj1,x,) 

and 

|/U|(*, th ) -Vi-111L (Xj1,x1) < CllJ'V |Lp(x 1.,X,)- 

Combining these inequalities we obtain 

Ali . * (Zh - Uh_) jp,(aTi)> Cpl vW IILp(XiI,X0)' 

This proves the assertion for p = a, and for p < cx it remains only to sum 
over i. 0 
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Let us now complete the proof by estimating IIWj IP. Note first that the Fourier 
transform of W' is given by 

W"(( = B(h)U((h) = )(ht)U 

where 

B(6) = (1 -e'0 1-e-' 

Assume first that 11 is small enough. Then using the diagonalization (3.10) of E(0) 
and recalling (3.11) we obtain after a simple computation 

BEn = Xn H1 + Xn H2, 

where H1 = 0(02). Therefore, using Lemma 3.2, we conclude that for I I < K, K 

small enough, 

I nBEn() I 
4 

C(0 2e-cPn4 + ecPn) 

|dBEkn (0) < C[(ioi + pnj9j')e-cPnO4 +(1 + pn)e-cPn]. 

Using a similar argument as in the proof of Lemma 3.5, we conclude that these 
estimates remain valid also for K < 101 < T. We can now apply the Carlson-Beurling 
inequality to obtain 

11WIIPR < M,(Bkn)ll U? 1 R 
where M. (BE fn) is estimated as in Lemma 3.1. An easy computation shows that 

M, (B~n , C(pn)-/ 

Combining the last two estimates with that given in Lemma 3.6 we now end up with 
(3.9), and the proof of Theorem 3.1 is complete. 

We conclude this section by stating a stability estimate for the discontinuous 
Galerkin method applied to the problem 

au + au = O. (x, t) E n 

u = g, (x, t) E(n) 

where y E [0, 1] and On n > 1, is the triangle 

On = f (XI 0; O < t < tn = nh, 0 < x < t} 

Let the triangulation Wh of n be defined as the restriction of the above triangula- 
tion of the half-plane to On, let k = 1 and let Uh be defined according to (1.2) on 
each T E Wh. Then we have in analogy with (3.8) the following stability estimate. 

THEOREM 3.2. There is a constant C such that for all n > 1 and 1 < p < x, 

II h ( tn) ILp(O tn) + IIUhIIp , < C11V - I1P (a&2)- 

The proof is based on the following localization result. 

LEMMA 3.7. Write the solutions of (3.7) as 
+ 00 

Un (x) = A BnjU0(x-jh), x E R. 
j= -00 
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Then the matrices Bnj satisfy 

|Bnj I < C min{1, (pn)-1/4, [1 + (pn)1/4] (j-yn)-2}. 

Proof. Using the Fourier transform E(8) of Gh we have 

B . 1I ( L(O)n d. 

By Lemma 3.1, 

I~n I 
c 177T e- cpn 4 do < C min f 1, (p } 

On the other hand, integrating by parts and using the periodicity of E(8), we have 

BnX I 
2|E(8)n (i) n y) do 

1,~ - 177) ? do 2[ ] 

From the argument used in the proof of Lemma 3.5, it is easy to see that 

dO2 [t(O)n] | c[(i + pnO2 + (pn)206)ecpn94 

+(I + pn +(pn)2e-cPn)], I <7-T. 

Using this estimate we obtain 

I Bj I < C [I +(p n)1/4] (j- _n)2 

and so the assertion is proved. 0 
Remark. Localization estimates similar to those given by Lemma 3.7 are pre- 

sented, e.g., in [3], [5] for scalar difference schemes. When compared with these 
estimates, Lemma 3.7 indicates that on a uniform mesh, the discontinuous Galerkin 
scheme with k = 1 behaves like a finite difference scheme which is accurate of order 
three and dissipative of order four. E 

Let us now prove Theorem 3.2. For 1 < m < n, define 

{ g(x, t), if (x, t) E (a32n)_ and tm1- < t < ti, 

~X, t) = { 
0 elsewhere on (aDi). 

Then 
n 

Uh (X, tn) = E Uhn(Xg tn) 0 < X < tns 

m=1 

where uhm denotes the approximate solution of (3.13) with g replaced by gm. Now 
let m be given 1 < m < n, and define for m < r < n the vector-valued function 
Ur-m on R by 

Ur-m(x) = [Uhm(Xi1/29 tr), h 3U (X t) x, < 
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where we set Uhm = 0 outside Q, Then Ur-m = Er-muo, where E is as in (3.7) and 
U0 is nonvanishing on the intervals (x0, x1) and (xm 1' Xm) only. Moreover, 
applying Lemma 2.1, we have the estimates 

|| U ||L (xox1) < CYII g(0 ) IIL=(t,1_jt,?) < C'Y||g |!0,(a")-9 

and, similarly, 

||U 11 LX(x,-1 s x,) < C(1 - 
Y) || IIlo (a2.)- 

On the other hand, by Lemma 3.7 we have 

qU n-m(X 1/2)1| < q1(n - m,i) U0(X1/2)| 

+q2(n - m, i)I U(Xmi172) |, 0< i< n - 1, 

where q1 and q2 satisfy 

qj(ri) < Cmin{ ,(pr)-1/4 [1 +(pr)1/4](i - yr)-2} 

q2(r,i) < Cmin{l,(pr)-1/4, [1 +(pr)1/4](m - 1 - i-yr)-2} 

Combining the above inequalities and summing over m we now obtain 

IlUhK(* I tn) IL.(X,,X,+l) 

(3.14) (00 00 

< Cllg 11O.(au")- q1(r,i) +(I - y) , q2(r, 
r=O r=O 

Using the above estimate for q1(r, i) we may estimate the first sum on the right side 
of (3.14) as 

00 

'Y E q, (r ,i) < Cy min{ 1, (pr 
) 1/4} 

M=0 r:ji-yrj~d 

+Cy E [1 +(pr)1/4](i - yr)-2. 
r:li-yrl>d 

Choosing here 

d = max{I,(pi/y)1/4) 

it is easy to see that both sums on the right side are bounded by an absolute 
constant. Upon estimating the second sum on the right side of (3.14) in a similar 
manner we now obtain 

1lUh ( , tn) |lLO,(?9xn) <" CII g II 0,(02") - 9n >, 1. 
Combining this estimate with the local estimates given in Lemma 2.1, the assertion 
follows in the case p = 00. The case p = 1 can be handled in a similar manner, and 
finally the remaining cases can be treated by interpolation [1]. We omit these details. 
a 

Remark 3.1. In the above analysis we have confined ourselves to the case k = 1. 
The case k = 0 is more elementary, and one can easily verify that the estimates 
stated in Theorems 3.1 and 3.2 are valid also in this case. Note that if k = 0, (3.8) 
merely states the well-known LP-stability of the upwind finite difference scheme, cf. 
[4]. So far we have not been able to carry out the full LP-stability analysis of the 
scheme (3.7) when k > 2. a 



ANALYSIS OF THE DISCONTINUOUS GALERKIN METHOD 19 

Remark 3.2. Using the stability estimate (3.8) one can perform an ordinary finite 
difference error analysis of the discontinuous Galerkin method when applied to 
problem (3.1). As an example, let us estimate the error of Uh(, t.) for some choices 
of initial data assuming that k = 1 and n < Ch-1. 

Case 1. Let us first seek a scheme of maximal order of accuracy by choosing the 
initial data as 

U0(x) = (g(x), ClAhg(X) + C2 h 

where Ahg(x) = g(x) - g(x - h) and cl and c2 are constants to be defined shortly. 
We have for the discrete solution U 

Un (()= [E(he)] fh(~ ). 

Correspondingly, we have for the exact solution, defining 

W"(x) = (u(x tn,), C1AhU(X, tn) + C2A~u(x, th)), 

that 

n() e-iynht/O(.) = eiYnh~O(. ) 

Let us now choose the constants cl and c2 so that U0(9) = g(()[V(() + O(jhtj3)], 
where V(() = (1, V2(()) is the eigenvector of E(h() corresponding to the eigenvalue 

- e-iYh + O((h()4). From the proof of Lemma 3.2 we obtain 

1 = 1, C2 = (2 --y). 

With this choice we have, for nh < C, 

W n(()- Un(() 
- 
eiYnh~ 

- 
(.) - X1()nV(() + o(1h 3) 

- eynh~ - X1( )n] W ? ( ) + O(|h 13) 

= 0(h344)W0(() + o(lh('3). 

This leads to the error estimate 

| U(Xi+12 - tn) UhK(Xi+?1/2, tn) |Ch3g || W4-(R)q 

so with a proper choice of initial data, the scheme is accurate of order three. 
Obviously, the high accuracy can only be achieved at discrete points; if the error is 
measured in the norm 11 * IlpR. a finite difference analysis only gives 

||(U - Uhj)(, tn) jjpR < Ch 
| g || W2P(R), 

which is an estimate typical for first-order schemes. We see below in Section 4 that 
the latter estimate can be improved by using the improved stability estimate (3.9). 

Case 2. Let the initial data be chosen as 

U0(x) = (Thg(x), ha(7Thg)(X)), 

which is the choice made by the usual discontinuous Galerkin scheme. Then 

|U- W IIPR < Ch21 g l! W3,P(R), 

which gives 

(U - Uh)(Xi+1/2 tn) Ch 21 g 11W3,(R)- 
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To sum up, we have for k = 1 and n < Ch-1, 

|(U - UK)(X?+172, tn) I < Chsll i 1sWlX(R)9 

where s = 3 with a special choice of initial data and s = 2 with the usual choice of 
data. Moreover, for (essentially) all choices of initial data we have 

jj(U - UhK)(, tn) IIPR < ChI |g 1 W2,pR 1 ?Rp q < X . 

4. Lp-Error Estimates. We now apply the results of the previous section to derive 

Lp-error estimates for the scheme (1.2) in the case where (h is a uniform or 
piecewise-uniform triangulation of Q and either k = 0 or k = 1. In the case of a 
uniform triangulation we will only need the estimates of Theorem 3.1, whereas if the 
triangulation is only piecewise uniform, also Theorem 3.2 will be required (in the 
case p = ox). The results below are thus valid for any value of k for which the 
estimates of Theorem 3.1 and 3.2 can be proved. 

We will need stability estimates analogous to (3.8) and (3.9) for the discontinuous 
Galerkin method applied to the problem 

(4.1) {u:+:au=f in , 
u =g on au_, 

where a E Loo(g). To generalize the situation stepwise, let us first assume that 2 is 
still the half-plane, with up = au/at + yau/ax and y E [0, 1] as above and with the 
triangulation i h defined as in the previous section. For each h we further use the 
notation 

= {(x,t): xE tnR 1 <t< tn 

(4.2) On = {(x, t): x ER. O < t < tn )}, 
n 

rn = U Sm , 
m=1 

where tn = nh and Sm is defined in Section 3. We now prove 

THEOREM 4.1. Let ifh be as above and let Uh be the approximate solution of (4.1) 
defined by (2.4) with either k = 0 or k = 1 and with hjjaIjI I sufficiently small. Then 
we have for all n > 1 and 1 < p < xc the estimates 

llUK (' tn) 11pR + 11 uh llPan 

CMqn (hn)l 11(TIP Q + 11il 1pR) 
and 

liV 13(UZ -h) lI rU 

< CM2qn[ h11/Pn1/2(hn)1-1PIf -2 + 11 

where M = 1 + IjallI aI , q = 1 + CMh and C is an absolute constant. 

Proof. Let us derive first some local estimates for uh on Wn. Applying repeatedly 
Lemma 2.1 to the triangles Tn+i1 Tn+I and Tn1 (see Figure 1), we see that 

IuhII|PK, + h1"||juK(,t,) IL (X X) + h11P"|V /3(U+ - Uh) IIP,(T-) 

< Chlf I|p, K, + Ch1'IUhI ( , tn-1) IILp(Xi-2 X,) 
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where Ki = Tj +1 u 1n u . For p = oc this implies immediately that 

(43) IhUIIp,, + h h7tIIun( tf) IIPR + h1l/Pjj * /3(uZ - U-) IIP S 

< ChI|f ll1 n + Ch1P /ui (U*, tn-1) IIpR, 

and for 1 < p < xc the same estimate readily follows by summation over i. 
It is easy to sharpen the estimate for uh(-, tn) in (4.3) by writing 

(4.4) u(., tn) = Ghuh( ,tn-1) + Vn(-, n > 1, 

where Gh is defined by (3.4) and (3.5). By linearity, vn is the discontinuous Galerkin 
solution on cin to the problem 

3w 3 
Yw 

lat +ax = In, (X, t)GE an, 

U(, tn-1 ) = 0, 

where fn = f - auh. Thus, by (4.3), vn satisfies 

(4.5) 1 Vn ( 
- 

tn) IIPR -< Chl 1/PI1IA IIPtn 
< C1M(hIIuK(-,tn-1) lpR + h111'PIlf Ip,4n). 

Upon solving for uh in (4.4), we get 
n 

Uh (*tn) = G 
h n 

W, 
w1=v1(* tj), j >1,w0=g. 

,j=0 

Applying here (4.5) and recalling that, by Theorem 3.1, 

JIG~ng |1pR < C1191lpR, g E- Lp (R), n > 1, I p < cc, 

we see that for any n> 1, 
n-1 

11 Uh ( tn ) IIPR < C Fh I 11Uh (,tn ) IIP ,R + CM( hn ) lfIPQ 
j=O 

The iteration of this inequality now gives 

| U(- (tn) IIPR < C(1 + CMh) n M( hn ) 1 1/P f LA + ll g llPR] 
which proves the first estimate in the theorem. 

In the remaining part of the proof we use the splitting 
n 

(4.6) Uh =E Uhm, (X, t) E- On, 
m=O 

where for m > 1, uhm denotes the discontinuous Galerkin solution to the problem 

aw aw _ -faauk, (xt) E m, 
at 3x k0, elsewhere on Q. 

u(-,O) = 0, 

and Uho is the discontinuous Galerkin solution to aw/at + yaw/ax = 0 in Q2, 
w(-,O) = g. Since uhm obviously vanishes for t < tmrln we have by (4.3) that for 

(4.7) ||V -3(Uhm - U-m) SPn +11Uhm(*,tn) IIpR < Chl1""If- aUhI|p wm. 
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Now Theorem 3.1 implies that for j > m > 1, 

li1 3B(Uhm 
_ 

Uhm) lIpS < C(j- m)j1/2h_1/P|f 
- 

auh lP 
and 

liV. */(uho - U Jo) liS) < Cj 'lpgii,R- 

Combining this with (4.7) and summing over m, recalling (4.6), we have 

Aliv 1*(uZ - uh) < C [hn 1/2l f auh loc,, + 11 9g K.R]I 
and 

n 

E IIV * (UZ - U*) Ill'S = lIV * (UZ - Uh) Ilii'" 
j=l 

z Cn/[II f - allh 1112n + 11 9 11 R] 
When combined with the estimate already proved for IIUhIIpa, these inequalities 
prove the second estimate of the theorem in the cases p = xc and p = 1. The 
remaining values of p can be treated similarly, and so the proof is complete. E 

Let us now return to the original situation of Eq. (1.1) where Q is a bounded 
convex polygonal domain. We assume first that Q allows a uniform triangulation, 
which obviously is possible only in specific cases. To simplify the notation, let us 
reduce the situation to that of (4.1) by introducing the affine mapping F: R2 R2 
with the following properties: (i) if /3 = F(/3) then /B2//1 E [0, 1], (ii) if T E(1 Wh 

then for some n, 0 < n < Ch-1 diam Q and for some i, F(T) has two of its vertices 
at the points (ih, nh) and ((i - 1)h, (n - 1)h) and the third vertex either at 
((i - 1)h, nh) or at (ih, (n - 1)h). It is obvious that such a mapping exists and is 
nonsingular. Moreover, if we write b(F(x)) = v(x), x E u2 and Q = F(E), it is easy 
to see that Uh is the discontinuous Galerkin solution of the transformed problem 

P - vua+ iiuf in Q 

=ig onaD_ 

on the triangulation {T = F(T): T E (h} Note also that C-1 < 1fj < C and that 
the error estimates to be proved below are invariant under the transformation F. 
Thus, we may as well consider the transformed problem. Below we suppress the 
tildes for simplicity, i.e., we write Q instead of Q, uh instead of "h, etc. Moreover, 
we use the coordinates (x, t) instead of (x1, x2) and denote by Jfh the uniform 
triangulation of the half-plane {(x, t): x E R, t > 0} such that L'h = { T E #h: 

T c a }, i.e., '1h coincides with the triangulation ( h referred to in Theorem 4.1. 
We also use the notation 

Dj {x E- R: (x 9 j) E= Q} 

We can now prove 

THEOREM 4.2. Let the domain Q and the triangulation ( h = be as above, let u 
be the solution of (1.1) and let Uh be defined by (1.2) with either k = 0 or k = 1. 
Assume further that hIIajj I is small enough and that h"/2 jjajj,>U < C. Then we have 
the error estimates 

iiU - Uh 11iP < CM2hk+1/21iUIwk+1,p(U), 1 < P < X, 
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and 

max ||(U - Uh)( , tj) IIP DJ 

2 hk /2 I U|Wk+l,p(a), p > 2, 

h | Iu w k+l,p(a), 1< p < 2, 

where M = 1 + IIallj and C is a constant depending only on diam(R). 

Proof. Let n be sufficiently large so that Q2 C On = {(x, t): x E R, 0 < t < nh } 
and let p e L1(0n) be such that p vanishes outside Q. Define the function Oh on Qn 

so that Ohl e Pk(T), T C Mh, and 

Jv(-Oh + ah ) dx dt+ f v (+- fhVfNds 
(4.8) T aT+ 

=p | sdx dt, T c=,# TC Qn 
TEJThT n, 

where 4+ = 0 on (a )+ and a = 0 outside E. Via the simple coordinate transfor- 
mation t -* nh - t, Oh becomes the discontinuous Galerkin solution of the problem 
(4.1) with Q = Q. and f(x, t) = (p(x, nh - t) and g = 0. Thus, by Theorem 4.1 and 

since n < Cdiam(Q)h-1, 

(4.9a) 1 f Oh i1 - < CMI e IIP Q.) 

(4.9b) |V.(h -h) ||pJrn <" CM2h1/2 -/Pl 11p 
Q O IpaGE LP (Q). 

Let us now sum over T c Q in (4.8) to obtain 

*VOh) = (T, v), v E Vh, 

where Vh is as in (2.3) and 9 is defined by (2.5) or equivalently, by (2.6). Choosing 
here v = uh - ii, where iu E Vh is an interpolant of u to be defined below and 

recalling (2.7), we obtain 

(4.10) (uh - u) = '(u -,Oh) 

Let us define the interpolant by requiring 

(4.11a) |(u-uTOvdx dt=O, vEEPk-,(T) (if k= 1), 

(4.11b) j(u- )vdx = 0, v E Pk(I ), T E Wh, 

where I is the side of T which is parallel to the x-axis. It is easy to see that ui is 
uniquely defined so far as u E W1'1. Applying the Bramble-Hilbert lemma [2] we 
obtain by standard reasoning the interpolation error estimates 

11 U - UIIpT < Chk+lIU |wk+1,p(T), 

I| U - UI |paT < Chk?1/'pIu |wk+1.p(T), 1 < p < x 0, 

where C depends only on K and k. 
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Now by (2.6) and (4.1la), 

-V(u - Ui.,h) U _ (uA- 
- ( Ah -f ds 

Fr n r)\aQsha 

+ a(u - )chdxdt, 

where F, is as in (4.2). Applying on the right side the Holder inequality, (4.9) and 
(4.11), and recalling (4.10), we have 

f (Uh - iu)Tdxdt 4 CM2(hk+1/2 + Ila 11 ,hk+l)Iu W2,p(a) 11 . 

where i/p + 1/q = 1. Since this is valid for any p such that epla G Lq(Q), 1 < q < 
00, and since IIaIIK'Uh1/2 < C, by our assumptions, it follows that 

hUh - F| Q , CM2hk+1/21UIW2.p(U), < P < X. 

Recalling the estimate for Ilu - uiIp and using the triangle inequality one obtains 
the asserted estimate for IIu - UhIIp Q. 

The remaining estimates are proved in a similar manner by first introducing a 
function 'p E L1(R), replacing the right-hand side of (4.8) by 

'2TAl (t=]h pvdx, T GE h, Tc Oin 
aTr)t=jh } 

and then proceeding as above. We omit the details. O 
We consider finally a more practical situation where the triangulation W h in (2.1) 

is only piecewise uniform. 

THEOREM 4.3. Let W h be a piecewise-uniform triangulation of S2 generated by W 
and let otherwise the assumptions of Theorem 4.2 hold. Then if u E Wk+lSP(S), 
1 < p < 0, we have the error estimate 

f chk+l l/PluIwk+ 1p(U), if 1 < p < 2, 

IIU - Uh tP42Q < Chk+l/2I U I Wk+l.P(U), if 2 < p < , 

where C depends on W and on II aI Q. 

Proof. For K E if, let u f be the local discontinuous Galerkin approximation to u 
on K defined by (1.2) for T E Wh, T C K, with uh- replaced by u on aK . Then 
uh =K + vK where VK is the discontinuous Galerkin solution to the problem 

(4.12) Up0 + aqap= 0 in K, 

(4.1)p=u-U onaK. 

Applying Theorem 4.2, we have 

|| U - Uh IP, K U - Uh 1P, K +11h IIPK 
(4.13) < Chk/2|u|k+l + |V PK 1 < X 

Assume for a moment the further estimates 

(4.14) K Clv * (u - uh) hP,8K, K E XW, 
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and 

(4.15) Iiv /3(u - u,*) Ip,8aK, < Chk+l/21UIWk+ 1P(K), K E W. 

Then the repeated use of (4.13) through (4.15) gives 

(4.16) I| u - UhI |pQ s< Chk+l/21 uI |wk+l p(U). 

Let us now consider the validity of (4.14) and (4.15). Assume first that aK 
contains two sides of K and denote by W4K the approximate solution of (4.12) in the 
case a = 0. Then it follows from Theorem 3.2, via an affine transformation, that 

||Wh I K c|IV 3(U - Uh) IIp,8aK 1 < P < X 
Further, applying Theorem 4.1, we easily see that 

I| hK WK IIK l hIP Ke < p < X,0 Iv hwhI~pK<Cilawh 1pK, 1~~ 

so combining these estimates we conclude that (4.14) is valid for any p if aK 
contains two sides of K. Finally, if aK_ consists of one side of K only, the same 
result can be read directly from Theorem 4.2. 

If p = 2, the estimate (4.15) is valid by Theorem 2.1, and for p = xo (4.15) 
follows from Theorem 4.2. Thus, by interpolation [1], (4.15) and (4.16) are true in the 
range 2 < p < oo. In the range 1 < p < 2, however, (4.15) cannot hold, since it 
would in this case violate the approximation properties of piecewise-polynomial 
spaces. Thus, we need a different reasoning if p < 2. 

Consider the case p = 1. Let q9 E L.o(Q) and Oh E Vh be defined by (2.8). By 
Theorem 3.2 and by Theorem 4.1, we have 

110h il oo ,K < C0( lomolX ,K+1 h 1 a+)a KE 

and so, by iteration, 

(4.17) 1 Oh 1 0,Q < C||p| .u 

Using now an argument from the proof of Theorem 4.2, with (4.9) replaced by the 
weaker estimate (4.17), it follows that 

II U - Uh II1,02 < ChklU IWk+l l(2). 

Upon interpolating between this estimate and the estimate (4.16) with p = 2, and 
recalling that (4.16) holds for p > 2, the proof is finally complete. D 

Remark. In the proof of Theorems 4.2 and 4.3 we have used the increased stability 
of the discontinuous Galerkin method as established by the fundamental inequality 
(3.9). It is possible to state this stability inequality in a form analogous to that given 
in Theorem 2.1. For example, if g = 0 in (1.1) and the triangulation W(h is uniform, 
we have (in the cases k = 0 and k = 1) that 

IUh lhJp < Ch1/211f IIPQg 1 < p < x, 

where 

(/p 

l V Ih,,O,p ( 11 alpT + h P |V V - V)IP, Y'h) 
Te rh 
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For a piecewise-uniform triangulation, the estimate remains valid in the range 
1 < p < 2, but ceases to be valid in the range 2 < p < x, as can be shown by a 
counterexample. In particular, if p = xo one can show that the estimate 

|U| h X,0o < Ch Elf 110 g 

is optimal. Since this follows already from the L.-stability estimate using an inverse 
inequality, we see that in this case the smoothing property of the discontinuous 
Galerkin method is lost. O 
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